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ABSTRACT

There are three distinct processes by which upward-propagating gravity waves influence the large-scale

dynamics and energetics of the middle atmosphere: (i) nonlocalized transport of momentum through wave

propagation in three dimensions that remotely redistributes atmospheric momentum in both zonal and

meridional directions from wave generation to wave dissipation regions; (ii) localized diffusive transport of

momentum, heat, and tracers due to mixing induced by wave breaking; and (iii) localized transport of heat by

perturbing wave structures due to dissipation that redistributes the thermal energy within a finite domain.

These effects become most significant for breaking waves when momentum drag, eddy diffusion, and wave

heating— the ‘‘breaking trinity’’—are all imposed on the background state. This paper develops a 3D pa-

rameterization scheme that self-consistently includes the breaking trinity in large-scale numerical models.

The 3D parameterization scheme is developed based on the general relationship between the wave action flux

and the subgrid-scale momentum and heat fluxes developed by Zhu in 1987 and a mapping approximation

between the wave source spectrum and momentum deposition distribution developed by Alexander and

Dunkerton in 1999. For a set of given input wind and temperature profiles at each model grid, the parame-

terization scheme outputs the vertical profiles of the subgrid-scale force terms together with the eddy diffusion

coefficients in the momentum and energy equations for a 3D background flow.

1. Introduction

Three-dimensional (3D) numerical models are impor-

tant tools used in the quantitative study of the middle

atmosphere and interpretation of satellite measurements.

Well-designed numerical models in the middle atmo-

sphere often consist of several types of comprehensive

modules representing radiation, dynamics, photochem-

istry, and transport. Among these four types of modules,

the dynamics or the dynamical core of a numerical model

plays a critical role in organizing and coupling different

physical processes in a consistent manner. This is mainly

due to the dynamics being controlled by fluid mechanics

that is a continuum, behaving highly nonlinearly, and

evolving with time on many different scales. The other

modules play complementary roles. For example, the

physics module for calculating radiative heating and

photolysis rates provides the parameterized force to drive

the dynamics and photochemistry. This partially affects

the dynamics with bounded or controllable uncertainty

because the time-independent problem of radiative

transfer is well defined and solvable for a given input of

atmospheric parameters, such as temperature and spe-

cies, solar irradiance spectrum, and kinetics database

(e.g., Zhu 2004; Mlynczak and Zhou 1998; Zhu et al.

2007). From the perspective of satellite measurements

and the global modeling of atmospheric structure, it is

often the large-scale dynamics and transport that can be

observed directly with instruments and simulated explic-

itly with models. For example, tidal winds were directly

observed from the Upper Atmosphere Research Satellite

High Resolution Doppler Imager (UARS/HRDI) and

were used to estimate the momentum deposition based

on the derived velocity correlation terms that character-

ize the effect of tides on the zonal mean flow (Lieberman
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and Hays 1994). The temperature measured from the

Sounding of the Atmosphere using Broadband Emission

Radiometer (SABER) onboard the Thermosphere, Ion-

osphere, Mesosphere, Energetics and Dynamics (TIMED)

satellite has been used to derive planetary-scale waves for

both temperature and winds and the associated wave force

terms such as the Eliassen–Palm flux divergence of tides

in the middle atmosphere (Zhu et al. 2005, 2008). These

large-scale fields derived from satellite observations can

be directly assimilated into numerical models in a di-

agnostic analysis to gain additional physical insights into

middle atmosphere dynamics (e.g., Akmaev 1997; Zhu

et al. 2005). On the other hand, the momentum and en-

ergy sources produced by subgrid-scale motions have to

be parameterized.

For middle atmospheric modeling studies, the subgrid-

scale motions can be most effectively represented by

gravity waves because of their ability to transport mo-

mentum and energy over a large spatial distance. Gen-

erated mainly in the troposphere by mechanisms such as

flow over topography (e.g., Nappo 2002; Teixeira et al.

2004), convection (e.g., Alexander et al. 1995), shear in-

stability (e.g., Lindzen 1974; Scinocca and Ford 2000), and

geostrophic adjustment (e.g., Zhu and Holton 1987),

gravity waves can propagate upward into the mesosphere

and lower thermosphere (MLT) (e.g., Hines 1960). It has

been well established that zonal forces generated by

breaking gravity waves are crucial to maintain large-scale

dynamics and transport in the middle atmosphere, espe-

cially in the MLT region (e.g., Lindzen 1981; Holton 1983;

Fritts 1984; Holton and Zhu 1984; McIntyre 2000; Holton

and Alexander 2000). It is also known, both observa-

tionally and theoretically, that wave generation and

propagation are 3D in space (e.g., Fritts 1984, 1995; Zhu

1987; Sato 1994; Marks and Eckermann 1995; Broutman

et al. 2001, 2002, 2004). On a slowly varying time scale or

averaged over a wave period, a propagating gravity wave

will not have any effect on the background wind or tem-

perature unless the wave is subject to dissipation in wave

action (e.g., Lighthill 1978; Zhu 1987; Eckermann 1992).

On the other hand, a dissipative wave could (i) induce

a momentum drag on the background flow, (ii) produce

eddy mixing in the background dynamical and tracer

fields, and (iii) generate a heating–cooling dipole on the

background temperature field. The mechanisms that con-

tribute to the dissipation of a gravity wave disturbance in

the middle atmosphere are convective and dynamical

instabilities, radiative damping, eddy diffusion, and

nonlinear wave–wave interactions. In the lower ther-

mosphere, molecular diffusion makes an additional

contribution. Among these dissipative processes, the

convective and dynamical instabilities associated with

wave breaking are believed to be dominant in producing

momentum drag and eddy diffusion in the background

flow (Fritts and Rastogi 1985). This is mainly because the

characteristic gravity waves in the middle atmosphere are

of high frequency and long vertical wavelength (e.g.,

Hirota and Niki 1985; Zhu et al. 1997), such that they

can propagate over a large distance without significant

damping before wave breaking. In addition to the drag

and eddy diffusion that have been extensively studied and

have been parameterized in many middle atmosphere

models, it has been recognized recently that the dy-

namical heating associated with the downward heat

flux by dissipative gravity waves also needs to be in-

cluded in middle atmosphere models (Becker 2004;

Akmaev 2007). Based on the rocket measurements of

neutral density fluctuations, Lübken (1997) found that

the dynamical heating rate near the mesopause estimated

from the turbulence energy dissipation rates amounts

to 10–20 K day21, which is comparable to the magni-

tudes of radiative and chemical heating rates in the

same region. In summary, the most effective dissipa-

tion of gravity waves—wave breaking—produces three

important effects on the background state: wave drag,

eddy diffusion, and wave heating. Here, we call these

three dynamical and energetic consequences resulting

from gravity wave breaking in the middle atmosphere

the ‘‘breaking trinity.’’

In terms of momentum flux or Reynolds stresses, the

parameterization of subgrid-scale motions by gravity

waves is fundamentally different from those in so-called

turbulent viscosity models, where the Reynolds stresses

are essentially parameterized by various length theories,

including Prandtl’s mixing-length theory and K-epsilon

models (e.g., Tennekes and Lumley 1972; Pope 2000). In

the latter case, the momentum is carried and transferred

by moving fluid parcels for a localized exchange. For

mechanistic general circulation models (GCMs) with a

high resolution that can explicitly resolve medium-scale

gravity waves, the localized mixing-length theory can

also be adopted to parameterize the effects of eddies

with much smaller subgrid scales (Becker 2009). On the

other hand, gravity waves carry and transfer momentum

by pressure and velocity fluctuations over a large spatial

distance. Such a nonlocalized transport of momentum

also provides one of the important physical bases for

changes in the tropospheric circulation to affect the

MLT dynamics and climatology. From the perspective

of wave–mean flow interactions in 3D flow on how the

momentum and energy are spatially redistributed within

the entire domain, the breaking trinity can be un-

derstood as three effects of wave propagation and dis-

sipation on the 3D mean flow: (i) nonlocalized transport

of momentum through wave propagation in 3D that

remotely redistributes atmospheric momentum in both
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zonal and meridional directions from wave generation

to wave dissipation regions; (ii) localized diffusive

transport of momentum, heat, and tracers due to 3D

mixing induced by wave breaking; and (iii) localized

transport of heat by perturbing wave structures that

redistributes the thermal energy within a finite domain.

To quantitatively and self-consistently examine these

effects on the 3D background state, we need a parame-

terization scheme that can provide (i) wave drag to the

background 3D flow consisting of both the zonal and

meridional components in the momentum equations,

(ii) eddy diffusion to the dynamical and tracer fields that

represents the mixing or the field smoothness by param-

eterized subgrid-scale motions, and (iii) wave heating to

the temperature field induced by the wave breaking in the

energy equation, all resulting from the dissipation of wave

action caused by the interaction between 3D subgrid-scale

waves and 3D background flow. This paper introduces

a new parameterization scheme of drag, eddy diffusion,

and wave heating imposed on a 3D background state by

the breaking of gravity waves. The output of the new

parameterization scheme will self-consistently include

all three distinct processes associated with the breaking

trinity by which the upward-propagating gravity waves

influence the 3D large-scale dynamics and energetics of

the middle atmosphere.

In section 2, we introduce a spectral parameterization

scheme of gravity wave breaking that simultaneously

produces the breaking trinity for given 3D wind and

temperature profiles. The central part of the derivation is

built on previous work by Holton and Zhu (1984), Zhu

(1987), and Alexander and Dunkerton (1999), which was

based on the general relationship between the wave ac-

tion flux and the wave momentum, and also on a simple

mapping approximation between the wave source spec-

trum in wave parameters and momentum deposition

distribution in altitude. Section 3 shows the typical mag-

nitudes and patterns of the breaking trinity to a 3D

background field of wind and temperature derived from

an output field of a high-altitude version of the Goddard

Earth Observing System atmospheric model (GEOS-5).

Finally, section 4 summarizes the paper.

2. Parameterization of gravity wave breaking in
a three-dimensional background flow

a. Wave–mean flow interaction in
a three-dimensional atmosphere

Following Holton (1975) and Zhu (1987), the gravity

wave–mean flow interactions in a 3D atmosphere are

described by two sets of coupled equations. One is for

the large-scale and slowly varying background flow,

which can be resolved explicitly by the model grid, and

the other is for 3D wave fields. For simplicity and also

because the effects of the breaking trinity due to the

subgrid-scale motions will be parameterized at each model

grid independently, we develop our parameterization

scheme by assuming the hydrostatic approximation on

an f plane. Using the two-scale analysis method, the

equations for the evolution of a background state under

a localized wave forcing representing the subgrid-scale

motions can be written as (Holton 1975; Zhu 1987)

Du� f y 1
›F

›x
5 S

u
1

›

›z
K

zz�m

›u

›z

� �
, (1)

Dy 1 f u 1
›F

›y
5 S

y
1

›

›z
K

zz�m

›y

›z

� �
, (2)

D
›F

›z

� �
1 N2w 5 S

T
1

›

›z
K

zz�T

›2F

›z2

� �
, (3)

with

S
u

5
�1

r
0

$ � F
u
, S

y
5
�1

r
0

$ � F
y
, S

T
5
�1

r
0

$ � F
F

z
.

(4a,b,c)

In the above equations, u, y, and w are the background

zonal x, meridional y, and vertical z velocities, re-

spectively; F is the background geopotential and is hy-

drostatically related to the background temperature T;

f is the Coriolis parameter; r0 is the background density

of the atmosphere; N2 is the squared buoyancy frequency;

and D is the time derivative following the horizontal

component of the background wind:

D 5
›

›t
1 u

›

›x
1 y

›

›y
. (5)

The squared buoyancy frequency slowly varies with al-

titude and is a measure of the static stability of the

background atmosphere:

N2(z) 5
R

H

›T

›z
1

kT

H

� �
, (6)

where R is the gas constant, H is the scale height of the

background air density, k [ R/cp ’ 2/7, and cp is the

specific heat at constant pressure. The left-hand sides of

Eqs. (1)–(3) represent the dynamical evolution of a flow

on a grid-resolved scale. The dynamical cores of differ-

ent GCMs may differ significantly. The right-hand terms

in Eqs. (1)–(3) represent the momentum and energy

2522 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67



sources contributed by the nonconservative processes of

dissipation and transience of upward-propagating subgrid-

scale gravity waves, (Su, Sy) and ST are the wave drag and

heating terms, and Kzz2m and Kzz2T are the eddy dif-

fusion coefficients for the momentum and sensible heat,

respectively. Note that Kzz2m and Kzz2T are related by

the eddy Prandtl number Pr (5 Kzz2m/Kzz2T). Since the

sensible heat flux is proportional to the potential tem-

perature gradient, Kzz2T can also be used for parameter-

izing subgrid-scale chemical tracer transport. In Eq. (4),

(Fu, Fy) and F
fz

are the pseudomomentum flux and sen-

sible heat flux, respectively. In this paper, all these terms

and coefficients are calculated for a spectral distribution of

a set of upward-propagating gravity waves specified at

the wave source region in the lower atmosphere.

Computationally, a subroutine that uses the vertical

wind and temperature profiles as input at each model

grid returns five vertical profiles of Su, Sy, ST, Kzz2m,

and Kzz2T in Eqs. (1)–(3). In addition, the geographic

location and seasonal timing also determine the sta-

tistical properties of the source spectrum for the gravity

waves specified in the lower atmosphere.

In Eqs. (1)–(3), the momentum (r0u, r0y) and total

potential energy (r0cpT) under the Boussinesq approx-

imation are all linear variables, so the eddy forcing terms

on the right-hand sides of the mean momentum and

energy equations can all be expressed in flux form, as

shown in Eq. (4) (Holton 1975). As a result, the mean

momentum and potential energies can be spatially redis-

tributed through the flux divergences, but the integrations

over an enclosed domain will be solely determined by the

boundary fluxes. Mathematically, this is also because the

average of a perturbed linear quantity vanishes (e.g.,

r
0
u9 5 0) so the eddy terms do not contribute to the mean

quantities in the volume integrations. Some parameteri-

zation schemes for gravity wave breaking have been de-

veloped based on an energy equation that also includes

the kinetic energy (e.g., Becker 2004). Since the kinetic

energy is a quadratic quantity, the separation of the at-

mospheric motion between the mean and eddies will re-

sult in two nonzero terms in its kinetic energy (e.g.,

r
0
u2 5 r

0
u2 1 r

0
u92). In this case, the mean energy

equation can no longer be written in a purely flux form

because there exists an energy conversion between the

mean and eddy fields. Furthermore, when the kinetic

energy is to be explicitly included in the energy budget,

a more sensible approach is to introduce the available

potential energy that is also quadratic in temperature

(Lorenz 1955). Under such a circumstance, only the

total energy that includes both the mean plus eddy and

kinetic plus available potential energies is still conserved

and can be written in a purely flux form (e.g., Dutton

1976; Holton 1975).

The effect of the background state on a wave com-

ponent is described by a set of ray tracing equations in a

3D stratified flow for its wave parameters (e.g., Lighthill

1978; Zhu 1987; Marks and Eckermann 1995; Broutman

et al. 2004). Specifically, the wave amplitude is best de-

scribed by the wave action conservation law

›A

›t
1 $ � (c

g
A) 5�a

w
A, (7)

where A 5 E/v̂ is the wave action density, with E and v̂

being the wave energy density and intrinsic frequency,

respectively; cg is the group velocity and cgA is called the

wave action flux; and aw is the bulk damping rate co-

efficient of the wave component, which characterizes

various damping processes including radiative and eddy

diffusive damping, molecular diffusion, and wave break-

ing. A wave component is also called a wave packet if

its wave parameters vary slowly with space and time.

The interaction between a wave packet and the back-

ground mean flow is often expressed by a relationship

between the wave action flux and pseudomomentum flux

or Eliassen–Palm flux (e.g., Dunkerton 1981; Palmer

1982; Andrews et al. 1987; Alexander and Dunkerton

1999). Given such a relationship, one can calculate the

subgrid-scale drag terms in Eq. (4) once the wave action

density has been solved from the wave action conserva-

tion law (7). Since the drag terms and dynamical heating

term in Eqs. (1)–(4) have been expressed in flux form,

the conservations of momentum and thermal energy of

the dynamical core are automatically preserved for the

grid-resolved flow as long as no spurious sources are

introduced on the boundaries. Most models assume a

hydrostatic approximation for both large-scale back-

ground state and subgrid-scale wave fields. Recently,

Shaw and Shepherd (2009) proposed a framework to

couple a hydrostatic large-scale flow to a nonhydrostatic

subgrid-scale flow that preserves the momentum and to-

tal energy conservations self-consistently.

Assuming the background state and wave parameters

are slowly varying in time and space with small dissi-

pation, neglecting the effect of planetary rotation on

medium-scale gravity waves, and using the two-scale

analysis method, Zhu (1987) showed that the wave ac-

tion density and the pseudomomentum and sensible

heat fluxes in the first-order approximation for an in-

dividual gravity wave packet in Eqs. (1)–(4) were related

through

F
u

5 kĉ
g
A, F

y
5 lĉ

g
A, F

f
z
5 0, (8a,b,c)

where k and l are the horizontal wavenumbers of the

wave packet in the x and y directions, respectively.
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ĉ
g

5 c
g
� (u, y, 0) is the intrinsic group velocity Doppler-

shifted by the horizontal component of the background

wind. Equation (8) together with Eqs. (1)–(4) describe

the effect of a wave packet on the background state. Note

that since we have applied the hydrostatic and the f-plane

approximations to the original set of equations there is

no velocity shift in the vertical component of the group

velocity, although it varies with altitude: ĉgz 5 cgz(z).

The wave dispersion relation and cgz under the hydro-

static approximation are given by (Zhu 1987)

v̂2 5 f 2 1
K2N2

l2 1 0.25/H2
, (9)

c
gz

5� lK2N2

v̂(l2 1 0.25/H2)
, (10)

where l is the vertical wavenumber and K is the total

horizontal wavenumber defined by K2 5 k2 1 l2. The

inertial effect of the Coriolis parameter f in Eq. (9)

becomes important only if one focuses on large-scale

gravity waves with horizontal wavelengths of several

hundred kilometers and examines their effects on lateral

propagations (e.g., Dunkerton 1984). Since our param-

eterization scheme is to be implemented on each model

grid independently, the inertial effect is often neglected

in the current paper except when its effect becomes

important in prescribing wave parameters. Also note

that the sensible heat flux vanishes under the first-order

approximation for a conservative gravity wave compo-

nent, as shown above in Eq. (8c). Equation (8) shows that

for a given wave action flux ĉgA that has been shifted by

the background wind the ratio of the momentum fluxes

between x and y directions is related by the direction of

the wavenumber vector (k, l) and is independent of the

direction of the background flow vector [u(z), y(z)]. This

means that the partition of the pseudomomentum flux

vector between x and y directions is determined by the

wave structure. The same dependent relations of the

momentum flux on the wavenumber vector and wave

action density were also derived by Warner and McIntyre

(1996) in their extension of Lindzen’s (1981) parameter-

ization scheme, where the distribution and variation of

the energy spectrum were prescribed in terms of l. As-

suming a steady vertical wind profile that is slowly varying

in the horizontal direction, it can be shown that the hor-

izontal wavenumber (k, l) and the ground-relative wave

frequency v do not vary with altitude (e.g., Zhu 1987;

Eckermann 1992). Therefore, the partition between Fu

and Fy of a wave component is entirely determined by its

horizontal wave vector specified at the source region.

Furthermore, since the horizontal components of the

phase velocity (cx, cy) 5 (v/k, v/l) do not vary with alti-

tude either, most parameterization schemes have speci-

fied the source spectra as a function of (k, l) and phase

speed c at the lower boundary (e.g., Holton and Zhu 1984;

Alexander and Dunkerton 1999; Becker and Schmitz

2002). Such a dependence on wave parameters in pre-

scribing the wave spectrum at the source region will also

be adopted in the current parameterization scheme.

The wave action conservation law (7) suggests that the

wave action flux (cgA) is a conserved quantity in the

absence of wave dissipation (aw 5 0). As a result, A is

invariant and its value along the rays depicted by cg is

a constant regardless of how other individual wave pa-

rameters vary as the wave packet interacts with the

background state. Specifically, assuming the steady-

state approximation (›/›t 5 0), the wave action flux cgA

at two different cross sections in space will be identical

and thus can be evaluated easily. On the other hand, the

pseudomomentum fluxes in Eq. (8) associated with the

drag terms in Eqs. (1) and (2) contain the intrinsic group

velocity, which prevents one from directly applying the

wave action conservation law. However, for a parame-

terization scheme in the middle atmosphere that assumes

the upward-propagating gravity waves are dominant, the

momentum flux convergence is exclusively contributed

from the vertical component of the pseudomomentum

fluxes. Under such a circumstance, we have

F
u,z

5 cosu
0
(Kc

gz
A), F

y,z
5 sinu

0
(Kc

gz
A),

F
f

z
,z

5�v
i
v̂A, (11a,b,c)

where we have introduced the horizontal direction of

wave propagation u0 based on the horizontal wave-

number vector by (k, l) 5 K(cosu0, sinu0). We have also

shown the higher-order approximation of the sensible

heat flux in Eq. (11c), where v̂ and vi are the real and

imaginary parts of the intrinsic frequency, respectively

(Holton and Zhu 1984). Equation (11) shows explicitly

that for an upward-propagating (cgz . 0) gravity wave

packet the signs of the momentum flux components

are determined by the wavenumber vector. Also, the

dissipation (vi . 0) induces a downward heat flux

(F
f

z
,z # 0) for an upward-propagating gravity wave that

has a positive v̂ by the notation convention (Holton and

Zhu 1984).

Expressions similar to Eq. (11c) have also been derived

previously (Walterscheid 1981; Talaat et al. 2001; Becker

2004). Here, for 3D applications that include both the

zonal and meridional velocity components and also for

using horizontal wavenumber and phase speed as work-

ing wave parameters, the intrinsic frequency is related to

the ground-relative frequency v by v̂ 5 v� ku� ly. If
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we further define the direction of the background flow

(u, y) by U(cosd, sind), then v̂ can be simplified as

v̂ 5 v�KU cosu 5 K(c�U cosu), (12)

where U 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 y2
p

is the magnitude of the back-

ground flow and u 5 u0 2 d is the angle between the

horizontal wavenumber vector and background flow.

Again, the ground-relative phase speed c 5 v/K (.0)

does not vary with altitude. The vertical sensible heat

flux by the gravity wave component vanishes unless it is

subject to damping or wave breaking that can be char-

acterized by the imaginary part of its frequency vi. Note

that it is the flux divergence that will contribute to the

momentum and energy budgets in Eqs. (1)–(3). Fur-

thermore, the flux form of Eq. (7) suggests that the in-

ternal damping and boundary values of wave action

density are closely related. Hence, wave momentum and

heat fluxes make similar types of contributions to the

momentum and energy budgets in such a way that they

only redistribute spatially within and vanish outside the

dissipation and generation regions. Specifically, when

the heat flux for a wave packet F
fz,z

vanishes at both

the lower boundary where waves are conserved (vi 5 0)

and the upper boundary where all waves have been

completely dissipated (A 5 0), nonzero wave heating

should occur in the form of a dipole so that the wave

heating within a finite domain will be exactly balanced

by wave cooling in an adjacent region. The wave damp-

ing associated with the breaking processes also leads

to turbulent eddy diffusion that can be parameterized

as eddy diffusion coefficients for the background state.

Our parameterization scheme provides the breaking

trinity, which includes both the momentum drag and

sensible heating terms by wave breaking together with

the eddy diffusion coefficients Kzz2m and Kzz2T used in

Eqs. (1)–(3).

b. Extension of Lindzen’s parameterization to
a three-dimensional atmosphere

We have already indicated that the convective and

dynamical instabilities associated with wave breaking

are believed to be the dominant mechanism of wave

dissipation for the upward-propagating gravity waves in

the middle atmosphere. The wave breaking can produce

both the momentum drag and eddy diffusion to the

background flow (Lindzen 1981). On the other hand, for

slowly propagating planetary waves where radiative

damping is the main dissipation mechanism, the effect of

eddy diffusion by wave dissipation on the background

state is small and often neglected (e.g., Matsuno 1970;

Holton and Lindzen 1972). Since vi represents the wave

dissipation effect by either radiative damping or eddy

diffusion (Holton and Zhu 1984), the wave dynamical

heating associated with Eq. (11c) remains potentially

significant for a slowly propagating wave with radiative

damping as its main dissipation mechanism. The in-

stabilities of an upward-propagating gravity wave are

mainly caused by the exponential growth of wave ampli-

tude due to the atmospheric density effect or the increase

of l due to the critical level and are modified by the static

stability of the background state. The most widely used

parameterization schemes have been those based on

Lindzen’s (1981) theory of wave breaking and saturation.

The term ‘‘saturation’’ refers to the growth cessation of an

upward-propagating unstable wave component when its

Richardson number reaches its critical value of 1/4 (shear

instability) or approaches zero (convective instability).

Lindzen’s parameterization scheme (1981) was origi-

nally proposed for deriving Su and the associated Kzz2m

for a zonal mean flow (u, 0). Although Lindzen’s (1981)

parameterization scheme was extended by Holton and

Zhu (1984) and several others, most schemes only cal-

culate four terms including Su, Kzz2m, and Kzz2T in

Eqs. (1)–(3) for a two-dimensional (2D) flow such as the

one containing the x component of the wind profile. The

central aspect in Lindzen’s (1981) parameterization is

that (i) the specification of the momentum deposition of

the breaking wave component between the breaking

level zb and the critical level zc is based on the saturation

assumption. This original parameterization scheme was

extended by Holton (1982) and Holton and Zhu (1984)

in the following two aspects: (ii) a directional isotropic

source spectrum of waves in phase speed is specified at

the lower boundary and (iii) each wave component is

influenced by Newtonian cooling and the eddy diffu-

sion induced by the breaking of other wave compo-

nents with lower zb. Aspect (iii) allows the nonlinear

interaction among different wave components to be

partially included in the parameterization. These exten-

sions also cause the wave momentum to be deposited in

a more extended region of the atmosphere, especially

below the dominant wave breaking level zb. It is noted

that aspects (i) and (iii) critically depend on aspect (ii),

which varies with season and geography. In fact, all

three key aspects rely on some approximations and

include significant uncertainties. Furthermore, because

of its relatively high frequency, the majority of the wave

momentum for an upward-propagating gravity wave is

deposited after its breakdown (i.e., in the region above

its breaking level zb).

Alexander and Dunkerton (1999) proposed a simpli-

fied version of Lindzen’s parameterization scheme by

neglecting the complex details of wave dissipation either

below or above the breaking level zb. They assumed all

momentum of a wave component to be deposited at the
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breaking level zb. By doing so, they mathematically have

directly mapped the source momentum spectrum in

horizontal wavenumber and phase speed at the lower

boundary to a momentum deposition and eddy diffusion

coefficient in altitude. Such a simplified parameteriza-

tion not only increases the efficiency of computation;

more importantly, it also combines all the uncertainties

in the above three aspects [(i)–(iii)] into one of speci-

fying the source spectrum of the waves. In principle, this

makes it much simpler to validate and improve the pa-

rameterization scheme as more observations of gravity

wave variance and spectra become available. Further-

more, we will show below that such a simplification also

makes the evaluation of the newly included sensible

heat flux Eq. (11c) straightforward. The 3D parame-

terization scheme that includes the breaking trinity in-

troduced below essentially combines the formulations of

Holton and Zhu (1984), Zhu (1987), and Alexander and

Dunkerton (1999) to give a set of output profiles of (Su,

Sy, ST) and (Kzz2m, Kzz2T) as functions of altitude for

a set of given input wind and temperature profiles of

(u, y, T) at each model grid.

From Zhu (1987), the wave energy density E for a 3D

hydrostatic gravity wave packet is given by

E 5
r

00
K2F2v̂2

2(v̂2 � f 2)2
, (13)

where r00 is the air density at the lower boundary z0 and

F is the geopotential. Assuming f 2 � v̂2 and neglecting

the inertial effect in Eq. (13), we have the wave action

density for a 3D gravity wave in a 3D background flow:

A 5
E

v̂
5

r
00

F2

2K(c�U cosu)3
, (14)

where we have used Eq. (12) to replace the wave fre-

quency v with the phase speed c. We note that the

pseudomomentum flux FP for a 2D model defined by

Alexander and Dunkerton (1999) is equivalent toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

u 1 F2
y

q
or KcgzA in the present notation for a 3D

model of gravity wave–mean flow interaction. Adopting

the same approximation of f 2 � v̂2 in the dispersion

relation (9) and further assuming l2 � 0.25/H2 for

breaking waves in Eqs. (9) and (10), we have

F
P

5 Kc
gz

A 5
r

00
KF2

2N(c�U cosu)
. (15)

Equation (15) establishes a close connection between

the momentum flux components in Eq. (11) and the

wave parameters commonly observable and specified in

most parameterization schemes.

Now, turning to Holton and Zhu (1984), the pseudo-

momentum flux of a 3D wave component in a 2D flow

[u(z), 0] with buoyancy frequency N(z) is given by

F
u

[ r
0
u9w9 5

r
00

kF2
0 c� u cosu

0

�� ��
2N c� u

0
cosu

0

�� ��(c� u cosu
0
)

3 exp �2

ðz

z0

l
i
dz

 !
, (16)

where F0 is the geopotential at the lower boundary z0, li

is the imaginary part of the vertical wavenumber, and the

exponential factor in Eq. (16) represents the damping

effect on the wave action. Note that both li and vi rep-

resent the dissipation effect of a wave packet; their re-

lationship is given by l
i
v̂ 5�v

i
l, which can be derived

by the dispersion relation (Holton and Zhu 1984). Also,

the wave pseudomomentum flux is inversely proportional

to the buoyancy frequency because waves are more easily

amplified in a less statically stable atmosphere. At the

lower boundary z0, where u 5 u0, we have

F
P0

[ (K/k)F
u0

5
r

00
KF2

0

2N(c� u
0

cosu
0
)

. (17)

Comparing Eq. (17) with Eq. (15) shows a great simi-

larity between the two and also shows how a formulation

for a 2D flow [u(z), 0] can be appropriately extended to

a 3D flow. It is the magnitude of the background wind U

and the wavenumber vector direction with respect to

the background wind (u 5 u0 2 d) that matters for-

mally. Specifically, if we follow a procedure similar to

Holton and Zhu (1984) for a 3D flow [u(z), y(z)], we can

derive the condition for the determination of the breaking

level zb:

F
P0

5
r

0
(z

b
)K

2N(z
b
)

c�U
b

cosu
�� ��3 c�U

0
cosu

�� ��
(c�U

0
cosu)

3 exp 2

ðz
b

z0

l
i
dz

 !
, (18)

where FP0 is given by Eq. (15) with N 5 N0 and U 5 U0;

N(zb) and r0(zb) are the background buoyancy fre-

quency and air density at the breaking level, respec-

tively. We have also assumed a slowly varying buoyancy

frequency in this derivation.

At this stage, we follow Alexander and Dunkerton

(1999) by neglecting any damping to gravity waves be-

low the breaking level [i.e., setting li 5 0 in Eq. (18)].

Then, the condition for wave breaking is simplified to
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ĉ
b

[ c�U
b

cosu 5
N

b
F2

0

N
0
(c�U

0
cosu)

" #1/3

exp
z

b
� z

0

3H

� �
,

(19)

where ĉ
b

is the breaking level intrinsic phase speed.

Equation (19) is a direct extension of Eq. (6) in Alexander

and Dunkerton (1999) to a 3D wave packet in a 3D at-

mosphere. It also defines the breaking level intrinsic fre-

quency v̂b 5 Kĉb.

To examine how the breaking condition is satisfied,

we rewrite the above equation at altitude z:

(c�U cosu)(c�U
0

cosu)1/3[N
0
/N(z)]1/3

5 F2/3
0 exp

z� z
0

3H

� �
. (20)

At the lower boundary z0, the left-hand side of Eq. (20)

should be greater than the right-hand side:

(c�U
0

cosu)4/3
. F2/3

0 . (21)

Wave components not satisfying the above condition at

the lower boundary are unstable and will be eliminated

from the source spectrum in the parameterization scheme

(Alexander and Dunkerton 1999). Note that the left-

hand side of Eq. (20) represents the effect of the critical

level on wave amplitude, whereas the right-hand side of

Eq. (20) is the amplification of the wave amplitude due

to the atmospheric density effect. Also, the background

stratification modifies the wave amplitude so that the

pseudomomentum flux is inversely proportional to the

buoyancy frequency as shown in Eq. (16). As z increases,

the breaking condition (19) for an upward-propagating

gravity wave in the absence of damping (li 5 vi 5 0) can

be satisfied through either the atmospheric density effect

that increases the right-hand side of Eq. (20) exponen-

tially or the effect of a critical level where the left-hand

side of Eq. (20) greatly decreases as Ucosu / c. Equation

(20) also implies that the wave action density is strictly

conserved below the breaking level zb. Physically, this

means that a wave breaks when it approaches a critical

level of increasing lapse rate because of the increase of

the vertical wavenumber and/or when its amplitude

increases because of the decrease of the background air

density. Furthermore, and most importantly, according

to Eqs. (7) and (11) the pseudomomentum and sensible

heat fluxes are constant before the wave reaches the

breaking level: FP(z) 5 FP0 and Ffz,z
(z) 5 0 for z , zb

when li 5 vi 5 0.

A complete dispersion relation for a nonhydrostatic

inertia–gravity wave is given by (Marks and Eckermann

1995)

v̂2 [ (v� ku� ly)2
5

f 2(l2 1 0.25/H2) 1 N2K2

K2 1 l2 1 0.25/H2
. (22)

The hydrostatic dispersion relation Eq. (9) can be re-

covered from Eq. (22) by an approximation K2� (l2 1

0.25/H2) for large-scale waves, corresponding to a hori-

zontal wavelength much greater than its characteristic

vertical scale. Equation (22) explicitly shows that the

squared intrinsic frequency v̂2 is the weighted average

of two squared cutoff frequencies f 2 and N2. This leads

to the following simplified condition for the permitted

phase speed for the default setting of the parameters in

the parameterization scheme:

f 2

K2
, (c�U cosu)2

,
N2

K2 1 0.25/H2
, (23)

where the Coriolis parameter f is a prescribed cutoff

frequency for trapped waves at the lower boundary and

N 5 N(z) is the cutoff frequency for reflected waves at

the entire altitude. Waves that do not satisfy Eq. (23)

before encountering breaking levels will also be elimi-

nated from the spectrum. Condition (23) is again a 3D

extension of a similar condition of total internal re-

flection when v̂2 exceeds N2 given by Alexander and

Dunkerton (1999) and also the possible reflection by

Jones’ critical levels of v̂2 5 f 2 (Yamanaka and Tanaka

1984) at the lower boundary. Computationally, we fur-

ther set j f j. 2 3 1025 s21 so that the left-side inequality

of Eq. (23) excludes unusually large values of FP0 in

specifying the source spectra based on Eq. (15) for a

given F0 field at the lower boundary.

For waves that reach breaking levels, we mainly fol-

low Alexander and Dunkerton (1999) and assume that

all the momentum is deposited at the breaking levels,

producing the breaking trinity of momentum drag, eddy

diffusion, and wave heating locally. Mathematically, the

procedure is equivalent to mapping the source mo-

mentum spectrum in horizontal wavenumber and phase

speed to a momentum deposition in altitude. Such a map-

ping procedure also makes the evaluation of Eq. (11c)

straightforward. To illustrate this point explicitly, we re-

write Eq. (11c) as

F
f

z
,z

5�
v

i
v̂

D
zz

Kc
gz

 !
D

zz
(Kc

gz
A) [�PD

zz
(Kc

gz
A),

(24)

where Dzz is the wave eddy diffusion coefficient at the

breaking level zb and is proportional to the momen-

tum deposition rate for the breaking wave component

(Holton 1982; Alexander and Dunkerton 1999):
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D
zz

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

u 1 S2
y

q
(c�U cosu)/N2. (25)

Below the breaking level, F
fz ,z vanishes because vi 5 0

for a wave packet without dissipation. At z 5 zb, vi 5

l2Dzz (Lindzen 1981) so we have a nonzero heat flux

once the wave starts breaking. Note that for a given

horizontal wavenumber K, the intrinsic phase speed ĉb

and frequency v̂b at the breaking level are known and

determined by Eq. (19). As a result, the corresponding l

and cgz at zb can also be easily calculated by the dis-

persion relations [Eqs. (9) and (10)]:

l2 ’
N2

ĉ2
b

, c
gz

5
K2N2

l3v̂
b

�����
�����. (26a,b)

Therefore, the coefficient defined in brackets in Eq.

(24) can be expressed in known wave parameters:

P 5 N3/(ĉ3
bK). In Eq. (26), we have again assumed l to

be much greater than 1/(2H) at zb. This is a good ap-

proximation because waves generally break near critical

levels where l2 � (0.25/H2). At this stage, all the flux

terms in Eqs. (11a)–(11c) can be simultaneously and

self-consistently calculated once the pseudomomentum

flux KcgzA is specified at the lower boundary for a set of

wave parameters. In the current notation, the induced

breaking trinity of momentum drag, eddy diffusion co-

efficient, and wave heating rate at altitude zk by break-

ing wave components ( j 5 1, . . . , J) can be calculated in

the following formulations:

X
h

5
«

r
0
(z

h
)Dz

�
j

(cosu
0
F

P0
)

j
for z

k�1
, z

b
(c

j
) # z

k
,

(27)

Y
h

5
«

r
0
(z

h
)Dz

�
j

(sinu
0
F

P0
)

j
for z

k�1
, z

b
(c

j
) # z

k
,

(28)

D
h

5
«

m
«

r
0
(z

h
)N2(z

h
)Dz

�
j

[c�U(z
h
) cosu]

j
(F

P0
)

j

for z
k�1

, z
b
(c

j
) # z

k
, (29)

Q
h

5

«2

r2
0(z

h
)N2(z

h
)Dz2

�
j

[c�U(z
h
) cosu]

j
(PF2

P0)
j
, z

k�1
, z # z

k

�«2r�1
0 (z

h11
)

r
0
(z

h
)N2(z

h
)Dz2

�
j

[c�U(z
h
) cosu]

j
(PF2

P0)
j
, z

k
, z # z

k11

,

8>>>><
>>>>:

(30)

where zh 5 zk 2 Dz/2 and zh21 5 zk 2 Dz represent the

half- and full-grid step below zk, respectively. Outside the

breaking regions as specified in the above expressions,

the values are set to zero for those breaking waves. The

force terms on the right-hand sides of Eqs. (1)–(3) on the

model grids are the averages of the above expressions:

S
u
(z

k
) 5

1

2
(X

h
1 X

h11
), (31)

S
y
(z

k
) 5

1

2
(Y

h
1 Y

h11
), (32)

K
zz�m

(z
k
) 5

1

2
(D

h
1 D

h11
), (33)

K
zz�T

(z
k
) 5 K

zz�m
(z

k
)/P

r
, (34)

S
T

(z
k
) 5

1

2
(Q

h
1 Q

h11
). (35)

In the above equations, « is an intermittency factor

introduced by Alexander and Dunkerton (1999) that

represents the ratio of the observed momentum flux to

the modeled one at the lower boundary. It is a specified

parameter in the parameterization scheme that can vary

with time, space, and wave parameters. The eddy dif-

fusion coefficient derived from the Lindzen-type pa-

rameterization refers to the dissipation and momentum

mixing to the wave field. To apply it to the background

mean state, we introduce an additional parameter «m to

characterize its efficiency for mixing the momentum of

the background fields. Holton and Zhu (1984) showed

that there was a partial cancellation between the direct

wave drag and the drag induced by the eddy diffusion,

which smoothed the total drag on the right-hand sides of

Eqs. (1)–(3). The current parameterization scheme in-

cludes hundreds to thousands of wave components in the

source spectrum, which yields smooth drag profiles for

typical wind profiles. Therefore, we set a smaller value of

«m 5 0.3 in the current scheme. The eddy Prandtl number

Pr is defined as the ratio of the eddy momentum diffu-

sivity to the eddy heat and tracer diffusivity. It also reflects

the fact that the wave eddy diffusion coefficient Dzz defined

in Eq. (24) is different than the eddy diffusion coefficient

for the background state Kzz2m defined in Eq. (33). Both
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the mesospheric tracer measurements and careful model

analysis of the breaking process show that Pr is much

greater than 1 (e.g., Strobel et al. 1987; Strobel 1989; Chao

and Schoeberl 1984). This is consistent with Eq. (8) of a

vanishing sensible heat flux to a first-order approximation.

We set Pr 5 5 in the current scheme. Again, it is noted

from Eqs. (27) and (28) that the partition of the deposited

momentum in (x, y) direction is based neither on (cosd,

sind) nor on (cosu, sinu) but rather on (cosu0, sinu0).

It should be pointed out that, strictly speaking, the first

and second terms on the right-hand sides of Eqs. (1)–(3)

represent two different ways of parameterizing the ef-

fects of subgrid-scale motions: nonlocalized wave forcing

due to wave propagation and breaking versus localized

mixing-length theory of turbulence. For a single gravity

wave component, the wave-breaking processes occurring

on scales much smaller than its wavelength dissipate the

wave action and induce the explicit momentum and heat

flux divergences shown in Eqs. (4) and (11). When

there is a clear scale separation among the background

grid-resolved motions, the smaller subgrid wave compo-

nent, and a much smaller-scale mixing by wave breaking,

the effect of the subgrid-scale eddy terms can be entirely

included by the first terms (Su, Sy, ST) in Eqs. (1)–(3).

Including the second eddy diffusion terms on the right-

hand sides of Eqs. (1)–(3) implies that the vertical mixing

by the much smaller-scale motions that directly dissipates

the wave component also diffusively mixes the grid-

resolved motions. The diffusion terms are expected to

become more important as more gravity waves compo-

nents with different wavelengths are included in the

parameterization scheme because this will make the

separation among different scales less obvious. This

analysis also suggests that the additional parameter «m

introduced in the current parameterization scheme is

empirical and it may vary with the setting of the wave

source spectrum.

From Eqs. (15), (19), (21), and (26), we see that, at zb,

ĉ and thus v̂, FP0, and P are all positive. Therefore, the

signs of the drag components are solely determined by

the wavenumber vector direction (cosu0, sinu0), whereas

the heating rate and eddy diffusion coefficients are al-

ways positive. Previous studies (e.g., Walterscheid 1981;

Liu 2000; Talaat et al. 2001) suggested that the gravity

waves could induce dynamical cooling in the wave-

dissipating region. A positive heating at zb in the current

parameterization scheme is mainly due to the assumption

that each spectral wave component is completely dissi-

pated at the breaking level where the wave heating occurs.

On the other hand, if one assumes a finite and a broad

region of wave dissipation between zb and a higher level

such as a critical level zc where the wave amplitude

completely vanishes, then cooling could occur in most

of the region between zb and zc. To accommodate such a

cooling effect, we add a cooling term of the same mag-

nitude in Eq. (30) immediately above zb, which leads to

a net effect of downward transport of heat near the wave

breaking level. Physically, this means that there is no net

heat being induced within the atmosphere when its

vertical heat flux vanishes in both the lower and upper

boundaries. Mathematically, the heat flux term of

an upward-propagating gravity wave packet shown in

Eq. (11c) experiences two major stages: (i) it changes

from 0 to a finite value as the wave breaks because of

a finite jump in vi at zb and (ii) it changes back to 0 again

as the wave approaches a critical level and completely

dissipates so that v̂A! 0. Previous studies mainly fo-

cused on (ii) and overlooked (i). The net effect of Eq. (30),

where the breaking waves heat the background atmosphere

at zb and cool it one level above zb, is the downward

transport of heat. We point out that the physical mech-

anism of this downward heat transport caused by a dis-

continuous wave breaking is slightly different from the

same conclusion in previous studies (e.g., Walterscheid

1981), where the downward heat flux and the associated

cooling only correspond to the above stage (ii).

Alexander and Dunkerton (1999) emphasized the dy-

namical importance of wave dissipation at zb rather than

at zc. The above analysis of the heat flux and transport

shows the energetic importance of wave dissipation at zb.

Wave dissipation at zb produces a net downward trans-

port of thermal energy to the mean state. Realization of

vi 5 0 and v̂A 5 0 at the lower and upper boundaries

respectively allows the finite downward heat transport to

be evaluated self-consistently. This also makes Eq. (3)

energetically consistent. In summary, the current pa-

rameterization of the breaking trinity extends the pre-

vious Lindzen types of parameterizations such as those by

Holton and Zhu (1984) and Alexander and Dunkerton

(1999) in two aspects: extending it to a 3D background

flow and including a wave breaking-induced heating

term. For a given set of input wind and temperature

profiles [u(z), y(z), T(z)] as a basic state in a model grid,

the parameterization scheme of the breaking trinity

outputs the vertical profiles of (Su, Sy, ST, Kzz2m, Kzz2T)

that allow one to calculate all the force terms by the

subgrid-scale motions such as those on the right-hand

sides of Eqs. (1)–(3).

c. Specification of the source spectrum

A discrete source spectrum needs to be specified for the

geopotential variance F0
2(u0, c, K) as a function of three

wave parameters: u0, c and K. We have already indicated

the reason for choosing these three independent wave

parameters for prescribing the wave spectrum: u0, c, and

K do not vary with altitude for an upward-propagating
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wave component. In some parameterization schemes,

such as the one by Warner and McIntyre (1996), the

distribution and variation of the energy spectrum were

prescribed as a function of l and v̂, both of which vary

with the altitude. We assume a functional form that is

separated in wavenumber vector direction: F0
2(u0, c, K) 5

B1(u0)B2(c, K). Following Matsuno (1982) and Holton

and Zhu (1984), we assume an isotropic distribution of F0
2

in u0 [i.e., B
1
(u

0
) 5 B 5 Constant]. Depending on spe-

cific model experiments and applications, the wave-

number vector azimuthal angle u0 is divided into 12, 16, or

20 equal sectors. In addition to simplicity (eliminating

one set of the tuning parameters in the parameterization

scheme), there are several physical justifications for an

isotropic spectrum: (i) waves with small phase speed with

random background wind will climatologically dominate

the topographic gravity waves at the lower boundary;

(ii) waves induced by convection (e.g., Alexander et al.

1995) or by geostrophic adjustment forced by a local

momentum source (e.g., Zhu and Holton 1987) show near

isotropic distribution in perturbation geopotential; and

most importantly (iii) the gravity wave source spectrum

added to the model will not change its dynamical prop-

erty of conserving the total angular momentum. Note

from Eq. (15) that there exists a difference in definition of

the isotropic spectrum between the geopotential variance

F0
2 and momentum flux FP. However, the first two justi-

fications described above (i.e., small c with random U and

large c with small U) also lead to an isotropic distri-

bution in FP.

We assume a wide range of horizontal wavenumber

with 12 equally spaced sectors in logarithmic scale be-

tween 2p/(800 km) and 2p/(6.25 km). This logarithmic

range is the same as the one used by Alexander (1998)

in a modeling study of linear wave ray tracing that re-

produces several climatological patterns observed for

stratospheric gravity wave variance. Such a setting in-

corporates several well-known observational and mod-

eling facts about gravity waves: (i) the characteristic

wavelengths of the terrain-generated gravity waves are

on the order of a few to tens of kilometers (e.g., Nappo

2002); (ii) the dominant wavelengths of the convectively

generated gravity vary with period and range from

tens to hundreds of kilometers (e.g., Alexander 1996);

(iii) the typical horizontal wavelength generated by geo-

strophic adjustment under a localized momentum forcing

is about 300 km (Zhu and Holton 1987); and (iv) in-

creasing the horizontal wavelength reduces zb (Alexander

and Dunkerton 1999), which allows for a deeper and more

uniform distribution of the parameterized drag and eddy

diffusion. We also note that the typical horizontal res-

olution of current GCMs is on the order of hundreds

of kilometers. The specification of the phase speed

spectrum B2(c, K) follows Matsuno (1982), Alexander

and Dunkerton (1999), and most modeling studies that

use a Gaussian function to construct the spectrum:

B
2
(c, K) 5 �

j
W

j
exp �

c� c
0,j

c
w,j

 !2
2
4

3
5, (36)

where the central phase speed c0,j, half-width cw,j, and the

corresponding weight Wj for different horizontal wave-

number Kj ( j 5 1, . . . 12) are specified according to var-

ious observational and modeling constraints. Because the

direction of the wave propagation has been represented

by the wavenumber vector direction u0, both c and K are

positive. In the default setting, the phase speed is divided

equally into 16 sectors between 5 and 70 m s21, with c0,j

and cw,j varying linearly within [0, 50] and [10, 20], re-

spectively. Computationally, the default setting of the

three wave parameters consists of 20 equal sectors in u0,

16 intervals in c, and 12 equally spaced sectors in loga-

rithmic scale in K. Therefore, the source spectrum con-

tains 3840 waves (520 3 16 3 12). Most of these waves

will break at different altitude levels to produce smooth

profiles for the source terms in Eqs. (1)–(3).

The entire spectrum is normalized by the measure-

ments based on the total variance of the gravity wave

geopotential F0
2 at the lower boundary, which varies

with space and time and is constrained by the observa-

tional climatology. To give an estimate of its magnitude,

we note that the variance of the geopotential height for

planetary waves at 250-hPa in mid- and high-latitude

regions is about 100–200 m (e.g., James 1994). If we

assume that the variance of the geopotential height for

gravity waves at the lower boundary is two orders of

magnitude smaller than that of the planetary waves at

the troposphere, then F0
2 is on the order of (10)2

(m2 s22)2 or (20)2 (m2 s22)2. In Alexander and Dunkerton

(1999), it is suggested that over topography, the mag-

nitude of the observed pseudomomentum flux r
0
u9w9 is

0.03 2 0.5 Pa. From Eq. (15), the variance of the cor-

responding geopotential is

F2
0 ’

2N c�U
0

cosu
�� ��

r
00

K
F

P0
; 500 (m2 s�2)2 (37)

for a typical setting of N 5 0.02 s21, r00 5 1.29 kg m23

at the surface, jc 2 U0 cosuj 5 20 m s21, and K 5 2p/

(100 km), which is consistent with the above estimate scaled

according to the planetary wave activity in the troposphere.

3. Numerical results of the parameterization
scheme

A set of output fields near the Northern Hemisphere

solstice (20050105) from version 5 of the Goddard Earth
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Observing System Data Assimilation System (GEOS-5

DAS) is used to test the parameterization scheme. The

GEOS-5 atmospheric GCM is a weather–climate-capable

model consisting of a finite-volume dynamical core and

a physical package parameterizing four major groups of

physical processes (Rienecker et al. 2008). The standard

setting of the atmospheric model has 72 vertical layers

extending from the surface to ;70 km. The major physical

processes contained in the model are (i) moist processes

including cloud microphysics, (ii) shortwave and infrared

radiation, (iii) drag and eddy diffusion parameterized by

a 2D Lindzen-type of scheme for gravity wave breaking

(McFarlane 1987; Garcia 1991), and (iv) surface pro-

cesses in the atmospheric boundary layer. A high-altitude

version of the GEOS-5 atmospheric model has 82 ver-

tical levels extending from the surface to ;100 km with

FIG. 1. Example of the winds from a high-altitude version of the GEOS-5 model (20050105) and the parameterized breaking trinity:

wave drag, eddy diffusion coefficient, and wave heating by gravity wave breaking from the GEOS-5 model runs near the NH winter

solstice. All fields have been zonally averaged over 144 longitudinal grids: (top left) zonal and (top right) meridional wind; (middle left)

zonal and (middle right) meridional drag; and (bottom left) eddy diffusion coefficient and (bottom right) heating rate.
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a horizontal resolution of 2.58 longitude by 28 latitude. In

Fig. 1, we show the zonal mean fields of the assimilated

model winds and the parameterized breaking trinity

calculated by the current scheme based on the output

model winds: wave drag, eddy diffusion coefficient, and

wave heating by gravity wave breaking. We do not show

the temperature field in the figure because it only plays

a minor role in the parameterization scheme by modify-

ing the background static stability. Note that the magni-

tudes of the zonal mean zonal drag Su and eddy diffusion

coefficient Kzz�m around the mesopause are comparable

to those in previous studies based on traditional Lindzen-

type gravity wave parameterizations, which were re-

quired to produce the horizontal anomalous temperature

gradient (or the vertical zonal wind reversals) near the

solstice mesopause (e.g., Holton 1983). In addition,

the current 3D parameterization scheme also provides

the forcing components of the meridional wave drag S
y

and wave heating rate ST in the primitive Eqs. (1)–(3).

Near the mesopause, the overall magnitude of the wave

heating and cooling due to wave breaking is comparable to

other estimates based on energy dissipation rates either

from the model (e.g., Liu 2000; Becker and Schmitz 2002)

or from the measurements (e.g., Lübken 1997) and is also

comparable to the radiative and chemical heating rates

in the same region (Zhu 1994; Zhu et al. 2000). In Liu

(2000), the vertical wave heating rate distribution also

shows some cancellation in altitude. Note that the added

wave heating S
T

not only directly changes the thermal

structure near the mesopause but also modifies the me-

ridional circulation through its thermal drive of the me-

ridional gradient of the heating rate (e.g., Zhu et al. 2001).

Historically, parameterizations of Su and Kzz�m by wave

breaking were proposed to explain the observed large-

scale features of the horizontal anomalous temperature

gradient (or the vertical zonal wind reversals) near the

solstice mesopause. Since S
y

and S
T

have been self-

consistently derived together with S
u

and K
zz�m

, their

additional effects on middle atmosphere dynamics and

physics should also be an important subject to be care-

fully examined. It should be emphasized that all terms Su,

S
y
, Kzz�m, and ST have been consistently calculated on

each model grid simultaneously for the corresponding

individual input wind and temperature profiles. The 2D

FIG. 2. Example of the parameterized breaking trinity: wave drag, eddy diffusion coefficient, and wave heating by gravity wave breaking

derived from the zonally averaged wind and temperature fields near the NH winter solstice: (top left) zonal and (top right) meridional

drag; and (bottom left) eddy diffusion coefficient and (bottom right) heating rate.
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plots shown in Fig. 1 represent the zonal mean fields av-

eraged over 144 longitudinal grids.

Figure 2 shows the breaking trinity of Su, S
y
, Kzz�m,

and ST as a function of latitude and altitude calculated

based on the zonally averaged wind field as shown on the

top row of Fig. 1 and the corresponding averaged tem-

perature field. Note that the wave–mean flow inter-

actions as described in the last section by Eqs. (19), (23),

and (26)–(30) are highly nonlinear. Therefore, the con-

sequences of the breaking trinity calculated based on a

zonally averaged flow will not be the same as those shown

in Fig. 1, which were calculated by zonally averaging the

derived force terms. Specifically, the overall magnitudes

in Fig. 2 are significantly greater than those in Fig. 1.

However, a careful comparison of the two figures shows

that they have similar spatial patterns. For example, near

the solstice mesopause, the zonal momentum drag is

mostly easterly in the winter hemisphere and westerly in

the summer hemisphere, which is dynamically required to

produce the horizontal anomalous temperature gradient

FIG. 3. As in Fig. 1, but on a longitudinal plane of 1108E, where the meridional wind is peaked.
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near the solstice mesopause. In addition, distribution of

the wave heating S
T

shows well-organized dipole pat-

terns with cooling regions sitting above the heating regions

in both figures, as expected from its parameterization

scheme (30). Physically, the existence of these differ-

ences and commonalities between the two sets of mean

fields is not surprising because the zonal mean state in

a 3D numerical model is driven somewhat differently

than the one in a 2D model since they have entirely

different subgrid scales.

The wind distribution at a particular longitude sector

could significantly deviate from its zonal average. This is

similar to the case in which a measured single wind

profile at a prescribed location could be completely dif-

ferent than its climatology. To see such an effect and

further illustrate the 3D nature of the current parame-

terization scheme, we show in Fig. 3 the input wind field

(u, y) and the output force terms (Su, Sy, K
zz�m

, ST) on

a longitudinal plane (1108E) where the meridional wind

is peaked. Comparison of Figs. 1 and 3 shows that both

the input and output fields have significant differences in

their magnitudes and patterns. Specifically, the zonal

winds in the winter hemisphere around the stratopause

are of opposite signs. As a result, the zonal drag force

near the winter mesopause also changes sign because of

the filtering effect of the upward-propagating gravity

waves. Since the wave filtering effect is believed to be

one of the main driving mechanisms for a variety of

middle atmosphere circulations (e.g., Dunkerton 1982;

Smith 1996; Mayr et al. 1998), the spectral parameteri-

zation of wave breaking proposed in the current paper is

expected to be appropriate for simulations of various

middle atmospheric circulations.

4. Conclusions

In this paper, we have developed a 3D spectral pa-

rameterization scheme to self-consistently include the

‘‘breaking trinity’’ of upward-propagating gravity waves

for large-scale numerical models: (i) momentum drag

that represents the nonlocalized transport of momen-

tum through wave propagation in a 3D background flow,

(ii) eddy diffusion coefficients that characterize the lo-

calized diffusive transport of momentum, heat, and

tracers due to 3D mixing induced by wave breaking, and

(iii) wave heating rate that captures localized transport

of heat by perturbing wave structures to redistribute the

thermal energy within a finite domain. For a set of given

input wind and temperature profiles at each model grid

(u, y, T), the parameterization scheme returns five ver-

tical profiles Su, Sy, K
zz�m

, K
zz�T

, and ST for calculating

the force terms on the right-hand sides of the momen-

tum and energy Eqs. (1)–(3).

The spectral parameterization has been developed by

using a general relationship between the wave action

flux and the wave momentum and heat fluxes developed

by Zhu (1987) and a mapping approximation between

the wave source spectrum and the vertical distribution of

the momentum deposition developed by Alexander and

Dunkerton (1999). When the parameterization algo-

rithm is applied to a set of 3D wind fields output from

a high-altitude version of the GEOS-5 atmospheric

model, the derived zonal mean drag and eddy diffusion

coefficient near the solstice mesopause are comparable

to those derived in previous work and are required to

produce the horizontal anomalous temperature gradient

and the vertical zonal wind reversals near the solstice

mesopause (e.g., Holton 1983). The derived wave heating

and cooling rates near the mesopause are found to be 10–

20 K day21, which is comparable to the radiative and

chemical heating rates. The filtering effect of the upward-

propagating gravity waves is also well captured by the

current parameterization scheme.
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